COURSE OUTLINE

(1) GENERAL

SCHOOL	Engineering				
DEPARTMENT	Electrical and Computer Engineering				
LEVEL OF STUDY	Undergraduate				
COURSE UNIT CODE	1.001	semester OF STUDIES 1°			
COURSE TITLE	Calculus I				
COURSEWORK BREAKDOWN			TEACHING WEEKLY HOURS		ECTS Credits
		Theory	5		6
		TOTAL	5		6
COURSE UNIT TYPE	General back	ground			
PREREQUISITES					
LANGUAGE OF INSTRUCTION/EXAMS	Greek				
COURSE DELIVERED TO ERASMUS STUDENTS					
WEB PAGE (URL)					

(2) LEARNING OUTCOMES

Academically Outcomes

This course is one of the basic Applied Analysis courses taught in the Department and focuses on the material of the calculus of one-variable functions. It aims to give the student the basic knowledge of advanced applied mathematics for engineers needed in his/her science in the area of differential and integral calculus of one-variable functions. This knowledge is necessary and mainly used in the Mathematics courses of the curriculum that follow as well as in subsequent courses of the Electrical Engineering specialty.

With the successful completing of course, the student will be in position:

- To use efficiently the differential and comprehensive calculus functions of one variable, as well as the theory of series and functions.
- To solve engineering problems, when they arise as applications of differential and integral calculus of one-variable functions.
- To develop semi-analytical solutions in problems where detailed solutions are not admissible

General Skills

Search, analysis and composition data and information. Adaptation in new situations. Autonomous work. Work in an interdisciplinary environment. Generating new research ideas.

(3) SYLLABUS

One-variable functions. Exponential and logarithmic function. Trigonometric, hyperbolic functions and their inverses. Limits and continuity of one-variable functions. Derivative and applications of the derivative. Polar coordinate system and functions in parametric form. Derivation of complex functions and functions in parametric form. Sequences and series of real numbers. Power series and Taylor series. Indefinite and definite integrals. Integration methods. Generalized integrals. Applications of Definite Integral. Ordinary differential equations of first order: definitions, methods of solution and application to physical problems.

(4) TEACHING METHODS - ASSESSMENT

MODE OF DELIVERY	Face-to-face in class			
USE OF INFORMATION AND COMMUNICATION TECHNOLOGY	Support the Learning process via of the e-class electronic platform			
TEACHING ORGANIZATION	Method description/Activity	Semester Workload		
	Lectures	65		
	Exercises	40		
	Non guided	75		
	study			
	Total Contact Hours	180		
ASSESSMENT METHODS	Study and exercise solutions during the duration of			
	semester (20%) and final examination (80%)			

(5) RECOMMENDED BIBLIOGRAPHY

- Thomas' Calculus (14th Edition), Hass, Joel; Heil, Christopher, Thomas, George Brinto and; Weir, Maurice D, Publisher: Pearson
- Thomas Calculus with Differential Equations (11th Edition), Finney R.L., Weir M.D. and Giordano F.R., Publisher: Addison Wesley