COURSE OUTLINE

(1) GENERAL

SCHOOL	Engineering				
	Engineering				
DEPARTMENT	Electrical and Computer Engineering				
LEVEL OF STUDY	Undergraduate				
COURSE UNIT CODE	4.004	SEMESTER 4 th			
COURSE TITLE	Signals and Systems				
COURSEWORK BREAKDOWN			TEACHING WEEKLY HOURS		ECTS Credits
	The	4		4	
Tutorial/Exercises			1		1
TOTAL			5		5
COURSE UNIT TYPE	Specialized knowledge/Skills development				
PREREQUISITES					
LANGUAGE OF	Greek				
INSTRUCTION/EXAMS					
COURSE DELIVERED TO ERASMUS	No				
STUDENTS					
WEB PAGE (URL)	https://eclass.hmu.gr/courses/ECE151/				

(2) LEARNING OUTCOMES

Learning Outcomes

The course introduces the basic concepts and properties of signals and systems in continuous and discrete time. It is a fundamental course for Electrical Engineers, especially in the directions of Electronics, Systems & Computers, and Telecommunications & Information Technology within the department's curriculum.

Upon successful completion of the course, the student will be able to:

- Understand the basic concepts and properties of signals in discrete and continuous time.
- Comprehend the transformations of continuous and discrete-time signals and their practical application.
- Describe and resolve linear time-invariant systems, calculate their response, and analyze transfer functions.
- Implement applications of the signals and systems course in Matlab/Python.

General Skills

- Autonomous work
- Teamwork
- Search, analysis and synthesis of data and information, using the necessary technologies
- Decision making
- Promoting liberal, creative and inductive/deductive thinking
- Work in an interdisciplinary environment

(3) SYLLABUS

• Introduction to Signals and Continuous-Time Systems: Basic operations, properties, elementary signals, types of continuous-time systems, and methods of description, convolution, and properties.

- Continuous Time Fourier analysis: Fourier Transform, Properties, Frequency Response Analysis, and introduction to linear filters.
- Laplace Transform for Continuous-Time Systems: Properties, convolution, and transfer function.
- Introduction to Signals and Discrete-Time Systems: Sampling and Quantization, Reconstruction of analog signal from digital.
- Fundamental discrete-time signals, operations, and transformations (scaling, inversion, and shifting).
- Discrete-time systems, linear time-invariant systems, description with difference equations, study using the convolution method, impulse response, step response.
- Z-Transform for the study of Discrete-Time Systems: Properties of the Z-transform, poles and zeros, transfer function and inverse Z-transform, solving difference equations.
- Introduction to the Discrete Fourier Transform and Discrete Fourier Transform of signals.
- Computational Applications of signals and systems in Matlab/Python.

MODE OF DELIVERY	In-Class Face-to-Face			
USE OF INFORMATION AND COMMUNICATION TECHNOLOGY	 Use of ICTs in lecturing Use of ICTs in Lab work Use of ICTs for the communication with students via the e-class platform 			
TEACHING ORGANIZATION	Method Semester Workload			
	Lectures	50		
	Project (journal/paper reading and theoretical study)	30		
	Lab work	20		
	Non-guided personal study	50		
	Total Contact Hours	150		
ASSESSMENT METHODS	All announcements for the course are posted in the course web page. The course grade incorporates the following evaluation procedures:			
	1. Written final examination (60 %)			
	Problem solving.			
	Short answer ques	tions		
	Multiple choice	ad a rad avera) 20%		
	 Lab project (report and oral exam) 20% Weekly assignments (20%) 			
	The evaluation criteria will be announced each year on the beginning of the semester. Typically, the final mark is comprised 80% of the final written exam and 20% of the lab and weekly assignments average.			

(4) TEACHING METHODS - ASSESSMENT

(5) RECOMMENDED BIBLIOGRAPHY

The recommended bibliography is in Greek.