COURSE OUTLINE

1. GENERAL

SCHOOL:	Engineering				
DEPARTMENT:	Electrical and Computer Engineering				
LEVEL OF STUDY:	Undergraduate				
COURSE UNIT CODE:	8.005		SEMESTER 8 th		
COURSE TITLE:	Reliability Engineering				
COURSEWORK BREAKDOWN		TEACHING WEEKLY HOURS		ECTS Credits	
Theory (Lectures)		4		4	
TOTAL		4		4	
COURSE UNIT TYPE:	Specialized knowledge/Consolidation				
PREREQUISITES:	No				
LANGUAGE OF INSTRUCTION/EXAMS:	Greek				
COURSE DELIVERED TO ERASMUS STUDENTS	Νο				
COURSE WEB PAGE (URL)	https://eclass.hmu.gr/courses/ECE164/				

2. LEARNING OUTCOMES

Learning Outcomes

The course "Reliability Engineering" aims to provide students the state-of-the-art knowledge on the issue of reliability for different types of engineering systems. The course covers theoretical and practical aspects related to modeling principles that can be applied to the reliability calculation of any engineering system. In addition, the course focuses on techniques applied to calculate reliability in specific types of systems, including power systems, electronic systems, and human reliability. Upon successful completion of the course, the students will be able to:

- Recognize the basic reliability principles of engineering systems (probabilistic analysis, simulation)
- 2. Combine numerical methods of reliability calculation during the operation of complex engineering systems
- 3. Apply the modeling principles and calculation techniques of reliability in power systems and electronic systems
- 4. Assess human reliability

General Skills

- Retrieve, analyse and synthesise data and information, with the use of necessary technologies
- Decision making
- Autonomous work
- Work in an interdisciplinary environment
- Project planning and management

3. SYLLABUS

- Fundamentals of engineering systems reliability (reliability indices, probability distribution functions)
- Reliability modelling using probability distributions (main subsystems, Markov chains)
- Numerical techniques for calculating reliability in complex systems (network reduction techniques, failure contingency analysis, fault trees)

- Calculation of system reliability using non-exponential distributions
- Reliability analysis of power systems (generation systems, transmission (AC and DC) and distribution systems, industrial facilities, reliability worth)
- Reliability analysis of power generation systems with renewable energy and energy storage technologies
- Reliability analysis of other engineering systems (electronic and computer systems, mechanical systems, human reliability)
- Reliability analysis using Monte Carlo simulation

4. TEACHING METHODS - ASSESSMENT

MODE OF DELIVERY	In-Class Face-to-Face			
USE OF INFORMATION AND COMMUNICATION TECHNOLOGY	 Use of ICTs in lecturing Use of ICT in Laboratory Teaching Use of ICTs for the communication with students via the e-class platform 			
TEACHING ORGANIZATION	Method description/Activity	Semester Workload		
	Lectures	40		
	Study and analysis of bibliography	10		
	Tutorial	10		
	Homework exercises	20		
	Independent study	40		
	Total Contact Hours	120		
ASSESSMENT METHODS	Assessment Language: Greek All announcements for the course regulations and complementary reading material are permanently posted in the course e-class. The course grade incorporates the following evaluation procedures:			
	 Student Assessment methods 1. Written final exam (80%) which in Solving problems related qualitative data Short answer questions 	cludes: to quantitative and		
	Multiple choice questionsHomework exercises (20%)			

5. RECOMMENDED BIBLIOGRAPHY

-Recommended Bibliography:

- E. Dialynas, Analysis and Calculation of Operational Reliability Indicators of Engineering Systems, Tsotras, 2016 (in Greek).
- E. Dialynas, Operational Reliability Analysis of Power Systems, Tsotras, 2013 (in Greek).
- E. Dialynas, Design of Electricity Generation and Transmission Systems with Reliability Criteria, Tsotras, 2013 (in Greek).
- I. Bakouros, Reliability and Maintenance of Engineering Systems, Sofia, 2009 (in Greek).
- I. Kontoleon, Reliability and Fault Tolerance of Systems, Aivazis, 2008 (in Greek).

- R. Billinton and R. N. Allan, Reliability Evaluation of Engineering Systems, New York: Plenum press, 1992.
- R. Billinton and R. N. Allan, Reliability Evaluation of Power Systems, New York: Plenum press, 1996.
- R. Billinton and W. Li, Reliability Assessment of Electric Power Systems using Monte Carlo Methods. Springer Science & Business Media, 1994.
- C. Singh, P. Jirutitijaroen, and J. Mitra, Electric Power Grid Reliability Evaluation: Models and Methods, Wiley-IEEE Press, 2019.

-Relevant scientific journals:

- IEEE Transactions on Reliability
- Reliability Engineering and System Safety
- Quality and Reliability Engineering International
- IEEE Transactions on Power Systems
- IEEE Transactions on Energy Conversion
- IET Generation, Transmission & Distribution