COURSE OUTLINE

(1) GENERAL

SCHOOL	Engineering			
DEPARTMENT	Electrical and Computer Engineering			
LEVEL OF STUDY	Undergraduate			
COURSE UNIT CODE	9.014 SEMESTER 9 th			
COURSE TITLE	Advanced Topics in Biomedical Engineering Topics			
(COURSEWORK BREAKDOWN		TEACHING WEEKLY HOURS	ECTS Credits
Theory (Lectures)		4	3	
Tutorial/Exercises		1	1	
TOTAL		5	4	
COURSE UNIT TYPE	Special background			
PREREQUISITES	7.013 – Biomedical Technology 8.016 – Biomedical Signals and Applications			
LANGUAGE OF	Greek			
INSTRUCTION/EXAMS				
COURSE DELIVERED TO ERASMUS	YES (in English)			
STUDENTS				
WEB PAGE (URL)	https://eclass.hmu.gr/courses/ECE134/			

(2) LEARNING OUTCOMES

Learning Outcomes

This course, using appropriate learning methodologies (Project-based learning) will focus on the application of basic principles of science and engineering to formulate, study and solve problems in the interface of engineering, medicine, and biology. The goal is twofold: on the one hand the quantitative study of important functions of living organisms and the understanding of the underlying molecular, cellular, or physiological mechanisms and on the other hand the deepening into the principles of engineering science that govern the field of biomedical engineering and are necessary for designing and studying the function of biomedical systems.

Upon completion of this course, the student will have acquired the necessary knowledge and skills to:

- Gain a deeper knowledge in the sub-area of biomedical engineering chosen for study.
- Conduct an independent bibliographic review and critical analysis of the current state-ofthe-art knowledge.
- Define a specific research question, design, and conduct a preliminary study, in the form of a literature study or a limited research project.
- Select and implement specific solutions for future problems/questions
- Analyze independently the results of the study and evaluate the capabilities of the suggested project.

In conclusion, the student will acquire the knowledge and skills to analyze a sub-area of Biomedical Engineering with a specific biological or biotechnological focus, i.e., dealing with the chemistry, structure or function of cells, tissues or entire organisms.

General Skills

- Search, analysis, and synthesis of data and information, using the necessary technologies
- Design, implementation of small research and development projects
- Decision making
- Autonomous work
- Teamwork
- Production of free, creative and inductive thinking

Theoretical part of the course

The theoretical part of the course focuses on a thorough review of the challenges for Engineers in selected areas of Biomedical Engineering, and on highlighting how it promotes medical practice and understanding, with the help of examples from the areas of bio-electricity, biomedical signals, bio-imaging, and biomechanics as well as molecular, cellular and tissue engineering.

It focuses on the application of basic principles of science and engineering to formulate, study, and solve problems at the interface of engineering, medicine, and biology. The goal is twofold: on the one hand the quantitative study of important functions of living organisms and the understanding of the underlying molecular, cellular, physiological mechanisms and on the other hand the deepening of the principles of engineering science that govern the field of biomedical engineering and are necessary for designing and studying the biomedical system function.

Laboratory part of the course

The laboratory part of the course is organized into small or medium complexity projects, following corresponding learning theories (Project-Based Learning). Each project consists of 2-4 students who perform their tasks with the help of a supervisor.

Each project includes the following:

- Literature review in the context of the project. Relevant scientific literature is searched and its content is analyzed and evaluated. Thusly, knowledge of the field and the alternative methods that are suitable for use in the project are gathered and acquired.
- Definition, in collaboration with the supervisor-professor of the exact object of the project, the working methods are agreed and the intermediated and final objectives are defined.
- The students of each group, under the supervision and guidance of the supervisor, implement the project, and organize the evaluation of the results.
- An extensive and comprehensive report is prepared to contain the literature review, a description of the implemented solution, details of how it was implemented, and the results produced. The report can take the form of a scientific paper.
- A presentation of the project, its objectives, and the result produced is prepared and presented.

MODE OF DELIVERY	In-Class Face-to-Face		
USE OF INFORMATION AND	Use of information and co	ommunication technology in	
COMMUNICATION TECHNOLOGY	teaching		
	Use of information and co	ommunication technology in	
	laboratory teaching		
		mmunication technology for	
	•	udents using the electronic	
	platform eClass		
TEACHING ORGANIZATION	Method description /	Semester Workload	
	Activity		
	Lectures	13	
	Coaching lectures	13	
	Small individual practice	13	
	tasks		
	Group project	52	
	Independent study	29	
	Total Contact Hours	120	

(4) TEACHING METHODS - ASSESSMENT

ASSESSMENT METHODS	The assessment is based on the total participation of each student in the group project (20%), on the evaluation of the written report that each student delivers (40%), and on the evaluation of the presentation that each student makes (40%).
	The assessment criteria are clearly stated in the detailed description of the course located in the relevant course area in eClass.

(5) RECOMMENDED BIBLIOGRAPHY

Suggested Bibliography:

- John Enderle, Joseph Bronzino, Introduction to Biomedical Engineering, ISBN-13: 978-0123749796
- Stefanos Zenios, Josh Makower, Paul Yock, Todd J. Brinton, Uday N. Kumar, Lyn Denend, Thomas M. Krummel, Biodesign: The Process of Innovating Medical Technologies 1st Edition, ISBN-13: 978-0521517423
- Joseph D. Bronzino, Donald R. Peterson, The Biomedical Engineering Handbook: Four Volume Set 4th Edition, ISBN-13: 978-1439825334
- Instructor Notes on selected topics of Biomedical Engineering

Related scientific journals:

- IEEE Transactions on Biomedical Engineering
- IEEE Biomedical and Health Informatics
- Nature Biomedical Engineering
- Annual Review of Biomedical Engineering
- Bioengineering (MPDI)