COURSE OUTLINE

(1) GENERAL

SCHOOL	Engineering				
	Engineering				
DEPARTMENT	Electrical and Computer Engineering				
LEVEL OF STUDY	Undergraduate				
COURSE UNIT CODE	9.012	SEMESTER OF STUDY 9 th			
COURSE TITLE	Embedded Systems				
(COURSEWORK BREAKDOWN		TEACHING WEEKLY HOURS		ECTS Credits
	Theory (Lectures)		3		2
Tutorial/Project		1		1	
Laboratory		1		1	
TOTAL		5		4	
COURSE UNIT TYPE	Specialized knowledge/Skills development				
PREREQUISITES	Computer Organization, Programming				
LANGUAGE OF	Greek				
INSTRUCTION/EXAMS					
COURSE DELIVERED TO ERASMUS	Yes				
STUDENTS					
WEB PAGE (URL)	https://eclass.hmu.gr/courses/				

(2) LEARNING OUTCOMES

Learning Outcomes

Embedded Systems focuses on developing methodologies for application-specific computing systems. After completing this course, students should be able to:

- Understand of use-cases, particular per application and per system requirements of a real-time or embedded system
- Understand methods to solve scenarios encompassing real-time attributes
- Understand and acquire experience in developing suites and toolchains in programming embedded devices
- Utilize operating systems and real-time operating systems in specialized embedded systems
- Understand and analyze embedded systems applications performance
- Utilize modern methods and tools together with reconfigurable systems to develop embedded systems

General Skills

The objective of this course is for the student to acquire the following general skills:

- Quest, analysis, and composition of data and information through using the needed technologies
- Adapting to new situations
- Autonomous studying and collaborative studying
- Creative judgement, critical thinking
- Decision making
- Development of innovative research ideas

(3) SYLLABUS

This course focuses in providing a foundation in designing and developing embedded systems
through using modern techniques and methods for systems-on-chip(SoCs). Additionally, it focuses on
familiarizing with modern CAD tools to implement specialized hardware and software embedded
systems.
The course comprises of lectures and laboratory exercises focusing on:
Develop a modern embedded system-on-chip for IoT and specific cyber-physical systems
Design an embedded system based on ARM microprocessor, or other microcontrollers such as
MicroBlaze or M4
Develop software applications targeting these microcontrollers in IoT environments and various use-
cases.
In particular, this course involves:
Introduction to embedded systems and definition of terms such as modeling and environment of
real-time systems
Architectures and development methods for embedded systems, microcontrollers, and particular
requirements regarding development environments, cross-compilers assemblers and emulators.
Design flows in developing and modeling in C, Java, etc
Real-time concepts, clocks, timers, events, responses, interrupts, etc
Real-time operating systems (RTOS), realizing and optimizing RTOS-based systems
Systems-on-chip design challenges and realizing technologies
Hardware-software co-design, fault-tolerance and modern concepts
The laboratory focuses on design and prototyping of embedded, systems-on-chip, analysis and
assessment of quantitative performance through using simulators and modern embedded
development platforms.

(4) TEACHING METHODS - ASSESSMENT

MODE OF DELIVERY	In-Class Face-to-Face			
USE OF INFORMATION AND COMMUNICATION TECHNOLOGY	 Use of ICTs in lecturing and lab Use of ICTs for the communication with students via the e-class platform 			
TEACHING ORGANISATION	Method description / Activity	Semester Workload		
	Lectures	35		
	Exercises	15		
	Labs	20		
	Individual Projects	20		
	Individual Study	30		
	Total Contact Hours	120		
ASSESSMENT METHODS	Language for Evaluation: Greek/English (Erasmus)			
	All announcements related to the syllabus, including			
	grading, assessment criteria, and complementary reading			
	material are permanently posted in the course web page (e-			

class). The course grade is based on the following evaluation		
procedures:		
1. Final exam on theoretical/practical problems (60%).		
The objective is to assess the students' understanding		
of key theoretical and practical concepts.		
2. Individual take-home exercises/projects (15%)		
3. Lab programming exercises (25%)		

(5) RECOMMENDED BIBLIOGRAPHY

- Peter Marwedel, ``Embedded System Design', Kluwer Academic Publisher, 2003.
- W. Wolf, ``Computers as Components: Principles of Embedded Computing Systems Design', Morgan Kaufman Publisher, 2001, ISBN 1-55860-541- X (case), ISBN 1-55860-693-9
- Qing Li and Carolyn Yao, "Real-Time Concepts for Embedded Systems", ISBN:1578201241
- George Kornaros, "Multi-core embedded systems", CRC Press, Apr. 2010

Related Scientific Publications

Selected articles published in top conferences such as IEEE/ACM CASES, CODES, EMSOFT, CPSCOM, and journals (such as $\delta\pi\omega\varsigma$ IEEE IoT Journal, IEEE Transactions on Computers, ACM Transactions on Architecture and Code Optimization, ACM Transactions on Embedded Computing Systems, ACM Transactions on Internet of Things)