COURSE OUTLINE

(1) GENERAL

SCHOOL	Engineering					
DEPARTMENT	Electrical and Computer Engineering					
LEVEL OF STUDY	Undergraduate					
COURSE UNIT CODE	7.016 SEMESTER 7 th					
COURSE TITLE	Advanced Electronic Devices					
COURSEWORK BREAKDOWN		TEACHING WEEKLY HOURS	ECTS Credits			
Theory (Lectures)		4	3			
Tutorial/Exercises			1	1		
TOTAL			5	4		
COURSE UNIT TYPE	Deeping/consolidation of specialty knowledge					
PREREQUISITES	Electrotechnical Materials I, Electronics I					
LANGUAGE OF INSTRUCTION/EXAMS	Greek					
COURSE DELIVERED TO ERASMUS STUDENTS	Yes					
WEB PAGE (URL)	https://eclass.hmu.gr/courses/ECE115/					

(2) LEARNING OUTCOMES

Learning Outcomes

- 1. To understand the physical and electrical properties of organic semiconductors
- 2. To understand the mechanisms of current conduction through these materials
- 3. To understand the procedures and methodology of studying the structure and properties of organic materials and to be familiar with the modern fabrication methods used today in the design of flexible materials and devices.
- 4. To describe and analyze the operating principles of basic organic electronic devices: from triodes to photovoltaic cells & systems and to organic light emitting diodes (OLEDS) and Laser
- 5. To know and apply the appropriate characterization protocols for the electrical and optical characterization of the various electronic devices for the reliable evaluation of their performance
- 6. To be able to use bibliographic databases to find / evaluate the most useful articles in their field of work

General Skills

- Retrieve, analyse and synthesise data and information, with the use of necessary technologies
- Autonomous work
- Teamwork
- Search, analysis and synthesis of data and information, using the necessary technologies
- Decision making
- · Promoting liberal, creative and inductive/deductive thinking

(3) SYLLABUS

Theory:

The aim of the course is to get acquainted with the printed electronic devices that are not based on inorganic semiconductors, such as silicon but on organic semiconductors, fabricated with printing technologies, which are currently a pioneering category of electronics with huge market potential in four main application areas: displays, photovoltaics, lighting and bio-electronic systems. To achieve this goal the structure is as follows:

A. Organic Semiconductors

- Conductive Conjugate Polymers and Small Organic Molecules.
- Electronic Structure and Electronic Properties.
- Correlation of chemical structure and optoelectronic properties.
- Techniques of Synthesis and Characterization of Organic Semiconductors

B. Organic optoelectronic devices

- Photovoltaic Devices (OPVs)
- Light Emitting Diodes (OLEDs)
- Organic Semiconductor Lasers
- Optical displays
- Colorimeter and cathode ray tube monitors
- Field Effect Transistor (OFETs)

C. Flexible electronic devices

- Printing techniques of electronic devices
- Flexible sensors
- Printed organic thin film transistors
- Flexible bio-electronic devices

D. Characterization Techniques of Semiconductor Devices

- Morphological Characterization (AFM)
- Structural Characterization (X-ray spectroscopy)
- Elemental Characterization (Absorption, Raman and FTIR)
- Electrical Characterization (Hall Characterization)

Laboratory

Fabrication and characterization of OPVs

- Deposition of organic electronic thin films s by spin coating
- Thermal deposition of metals
- Optical characterization of organic thin film electrons
- Fabrication of OPVs
- Performance analysis of OPVs (J / V-EQE-IQE)
- OPVs stability analysis

(4) TEACHING METHODS - ASSESSMENT

(4) TEACHING METHODS - A	(4) TEACHING METHODS - ASSESSMENT					
MODE OF DELIVERY	In-Class Face-to-Face					
USE OF INFORMATION AND	Use of ICTs in lecturing					
COMMUNICATION TECHNOLOGY	Use of ICT in Laboratory Teaching					
	Use of ICTs for the communication with students					
	via the e-class platform					
TEACHING ODGANIZATION						
TEACHING ORGANIZATION		Semester				
	Method description/Activity	Workload				
	Lectures	48				
	Laboratory Work	24				
	Study of scientific articles	12				
	Project	12				
	Exams	24				
	Total Contact Hours	120				
ASSESSMENT METHODS	Assessment Language: Greek					
	All announcements for the course regulations and					
	complementary reading material are permanently posted in					
	the course web page. The course grade incorporates the					

following evaluation procedures:

Description

Written test; duration of 180 minutes (70%) Laboratory assessment (15%) and project assessment (15%)

Student Assessment methods

- 1. Written Exam with Short Answer Questions (Summative)
- 2. Written Exam with Extended Answer Questions (Summative)
- 3. Written Assignment (Summative)
- 4. Oral Exams (Summative)
- 5. Written Exam with Problem Solving (Summative)
- 6. Laboratory Assignment (Summative)

(5) RECOMMENDED BIBLIOGRAPHY

Recom	Recommended Bibliography:								
α/α	Title	Author	Publisher	ISBN	Year				
1	Applications of Organic and Printed Electronics	Eugenio Cantatore	Springer	978-1-4614- 3160-2	2013				
2	Organic Electronics II: More Materials and Applications	Hagen Klauk	Wiley-VCH	978352732647	2012				
3	Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies, 2nd Edition	Christoph Brabec, Ullrich Scherf, Vladimir Dyakonov	Wiley-VCH	978-3-527- 65693-6	2014				