COURSE OUTLINE

(1) GENERAL

CCHOOL	Franks and a				
SCHOOL	Engineering				
DEPARTMENT	Electrical & Computer Engineering				
LEVEL OF STUDY	Undergraduate				
COURSE UNIT CODE	7.002	SEMESTER OF STUDY 7 th			
COURSE TITLE	Power Systems – Steady State Analysis				
COURSEWORK BREAKDOWN			TEACHING WEEKLY HOU	RS	ECTS Credits
Theory (Lectures)		3		3	
Laboratory			1		1
TOTAL		4		4	
COURSE UNIT TYPE	Special Background				
PREREQUISITES	None				
LANGUAGE OF	Greek/Greek				
INSTRUCTION/EXAMS					
COURSE DELIVERED TO ERASMUS	No				
STUDENTS					
WEB PAGE (URL)	https://eclass.hmu.gr/courses/ECE205/				

(2) LEARNING OUTCOMES

Learning Outcomes

Upon successful completion of the course the student will be able to:

- A) Understands the operation of Electricity Power Systems and Analyses the relevant features and components (Generators, T/F, Transmission Lines, etc).
- B) Estimates all steady state operating conditions through load flows.
- C) Understands the principles of operation of Medium and Long Transmission Lines and solves them corresponding ABCD models.

General Skills

The course aims to acquire the following general skills:

- Search, analysis and synthesis of data and information, using the necessary technologies
- Adaptation to new situations
- Autonomous work
- Teamwork
- Project design and management
- Respect for the natural environment

(3) SYLLABUS

The aim of the Course is the knowledge of the operation of the Electricity Power Systems in the steady state situation, understanding the involvement of each parameter and resolving the corresponding load flows on the transmission and distribution networks. To achieve this goal the structure of the Course content is as follows:

Theory

- 1. Structure of Electricity Power Systems
- 2. Power Generation Systems
- 3. Transmission and Distribution Substations
- 4. Transmission Line Models
- 6. Load Flow Analysis

Laboratory

Simulations of Power System operation with the help of special educational software and Hardware in the Loop

(4) TEACHING METHODS - ASSESSMENT

MODE OF DELIVERY	In-Class Face-to-Face		
USE OF INFORMATION AND COMMUNICATION TECHNOLOGY	Relevant ICTs Technologies & e-class		
TEACHING ORGANISATION	Method description / Activity	Semester Workload	
	Lectures	35	
	Exercises 15		
	Projects	25	
	Labs	20	
	Self-Study	25	

	Total Contact Hours	120
ASSESSMENT METHODS	Language: Greek	
	Evaluation methods:	
	1. Final exams (80%)	
	2. Project (20%)	

(5) RECOMMENDED BIBLIOGRAPHY

Journals:

- IEEE Transactions on Power Systems
- Elsevier Electric Power Systems Research
- Elsevier International Journal of Electrical Power & Energy Systems

Sites:

- 1. http://www.rae.gr
- 2. http://www.deddie.gr
- 3. http://www.admie.gr