COURSE OUTLINE

(1) GENERAL

SCHOOL	Engineering				
DEPARTMENT	Electrical and Computer Engineering				
LEVEL OF STUDY	Undergraduate				
COURSE UNIT CODE	4.005	SEMESTER 4 th			
COURSE TITLE	Numerical Analysis				
COURSEWORK BRE	COURSEWORK BREAKDOWN			RS	ECTS Credits
	Th	2		3	
	Tutorial/Exercises				1
TOTAL			3		4
COURSE UNIT TYPE	Specialized general knowledge/Skills development				
PREREQUISITES	1.006 Scientific Programming in Python				
	3.001 Differential Equations and Complex Analysis				
LANGUAGE OF	Greek				
INSTRUCTION/EXAMS					
COURSE DELIVERED TO ERASMUS	No				
STUDENTS					
WEB PAGE (URL)	https://eclass.hmu.gr/courses/ECE118/				

(2) LEARNING OUTCOMES

Learning Outcomes

The course aims to a critical understanding of arithmetic methods for the purpose of solving problems which do not succumb to analytical methods. Upon successful completion of the course, students will possess the necessary knowledge and skills to competently apply classical methods of arithmetic analysis to handle problems that arise in the fields of science and technology. Main learning outcomes include:

1. The critical understanding of the different types of errors and their propagation to calculations in order to responsibly select appropriate and stable methods of solution.

- 2. The competent application of basic numerical methods for solving nonlinear equations.
- 3. Understanding fundamental methods for solving linear systems and their effectiveness.
- 4. Competent application of the polynomial interpolation method.

5. Understanding the fundamental methods of numerical integration.

General Skills

- Autonomous work
- Search, analysis and synthesis of data and information, using the necessary technologies
- Decision making
- Promoting creative and inductive/deductive thinking

(3) SYLLABUS

- Floating point & rounding errors and their consequences.
- Numerical solution of nonlinear equations (iterative methods, Newton and intersecting methods).
- Numerical solution of linear systems (Gaussian elimination, LU factorization, Jacobi and Gauss-Seidel methods).
- Polynomial interpolation (Lagrange methods and Newton's split differences).
- Least squares (rectangular polynomials, discrete minimum squares, Householder transformations, special values).

MODE OF DELIVERY	In-Class Face-to-Face			
USE OF INFORMATION AND COMMUNICATION TECHNOLOGY	 Use of ICTs in lecturing Use of ICTs for the communication with students via the e-class platform 			
TEACHING ORGANIZATION				
	Method description/Activity	Semester Workload		
	Lectures	26		
	Exercises	13		
	Non-guided personal study	81		
	Total Contact Hours	120		
ASSESSMENT METHODS	1. Quizzes including questions and short exercises (20 %)			
	 Midterm written examination including short exercises and problem solving (20 %) Final written examination including short exercises and 			
	problem solving (60 %) Current course assessment details are posted in eclass.			

(4) TEACHING METHODS - ASSESSMENT

(5) RECOMMENDED BIBLIOGRAPHY

Relevant English Texts:

• Numerical Methods for Engineers, S.C. Chapra & R.P. Canale, 7th ed., McGraw Hill, 2015, ISBN: 978-0073397924.

• Numerical Computation in Science and Engineering, C. Pozrikidis, 2nd ed., Oxford University Press; 2008, ISBN: 978-0195376111.