COURSE OUTLINE

(1) GENERAL

SCHOOL	Engineering				
DEPARTMENT	Electrical and Computer Engineering				
LEVEL OF STUDY	Undergraduate				
COURSE UNIT CODE	3.004	3.004 SEMESTER 3 rd			
COURSE TITLE	ELECTRONICS I				
(COURSEWORK BREAKDOWN		TEACHING WEEKLY HOU		ECTS Credits
	The	eory (Lectures)	3		3.6
	Tut	1		1.2	
Laboratory			1		1.2
TOTAL			5		6
COURSE UNIT TYPE	Specialized general knowledge/Skills development				
PREREQUISITES	General High School Knowledge in Physics, Electrical Circuits I.				
LANGUAGE OF INSTRUCTION/EXAMS	Greek (Teaching, Exams) English (Exams) French (Exams)				
COURSE DELIVERED TO ERASMUS STUDENTS	YES				
WEB PAGE (URL)	https://eclass.hmu.gr/courses/ECE120/				

(2) LEARNING OUTCOMES

Learning Outcomes

1. Knowledge of p-n junction based on semiconductor theory.

2. Knowledge of diodes principles (Silicon, Germanium, Zener diode) and their applications in electrical circuits.

3. DC and AC analysis of bipolar junction transistors (basic equations, equivalent circuits). Skills in designing signal amplifiers.

4. Monopolar transistor (FET) (basic equations, equivalent circuits, dc and ac analysis). Skills in designing signal amplifiers.

5. Ability to understanding and analysing (in theory and in laboratory) amplifiers with bipolar (BJT) and monopolar (FET) transistors. Skills in designing single stage amplifiers in analog and integrated circuits.

General Skills

- Search, analysis and synthesis of data and information, using the necessary technologies
- Decision making
- Project design and management
- Autonomous work
- Teamwork
- Exercise criticism and self-criticism
- Promoting liberal, creative and inductive/deductive thinking

(3) SYLLABUS

SYLLABUS

The p-n diode and basic semiconductor theory. Electrical equivalent diode circuits. Basic circuits with p-n and Zener diodes. AC to DC conversion circuits through rectifier circuits. Structure and operating principles of the BJT bipolar transistor: DC polarization, I-V output curves, circuit operating point, basic amplification principles, basic BJT circuits (common emitter, common collector, switch). FETs, field-effect transistors: DC polarization. Analysis and design of basic amplifier devices of bipolar transistors and FET transistors using equivalent small signal circuit models. Understanding of the techniques and procedures to build integrated circuits.

LABORATORY with 5 Exercises

- 1. I-V curves of p-n and Zener diode
- 2. Useful diode circuits
- 3. Simple DC Power Supply (Rectifiers Smoothing Filters).
- 4. BJT transistor. DC Polarization and amplification (Common Emitter, Common Collector).

5. FET transistor. DC Polarization and switching operation

(4) TEACHING METHODS - ASSESSMENT

MODE OF DELIVERY	In-Class Face-to-Face				
USE OF INFORMATION AND	Use of ICTs in lecturing				
COMMUNICATION TECHNOLOGY	Use of ICTs in laboratory exercises.				
	• Use of ICTs for the communication with students via the				
	e-class platform				
EACHING ORGANIZATION	Method description/Activity	Semester Workload			
	Lectures	39			
	Laboratory Exercise 26				
	Tutorials	13			
	Project (journal/paper reading 26				
	and theoretical study)				
	Exams	39			
	Total Contact Hours	150			
ASSESSMENT METHODS	Evaluation process				
	1. Written examination 180 minutes (70%)				
	2. Laboratory performance (20%)				
	3. Public presentation (10%)				
	Language of Evaluation: Greek				
	Evaluation Methods				
	1. Written Examination with Extended Answer Questions				
	2. Written Assignment				
	3. Oral Examination				
	4. Written Examination with Problem Solving				
	5. Laboratory Work				

(5) RECOMMENDED BIBLIOGRAPHY

1. Electronic Principles, 8th Edition, Malvino A. P., Bates D. J., Publication Tziola, 2016 ISBN 960-418-559-4 (in Greek)

2. Microelectronic Circuits, 7th Edition & CD, A. Sedra, K. Smith, Publication Papasotiriou, 2017, ISBN 960-491-107-3 (in Greek).

3 Electronic Devices and Circuits Theory R. Boylestad and L. Nashelsky Prentice-Hall ISBN 0-13-249517-1