COURSE OUTLINE

(1) GENERAL

SCHOOL	Engineering				
DEPARTMENT	Electrical and Computer Engineering				
LEVEL OF STUDY	Undergraduate				
COURSE UNIT CODE	1.006	006 SEMESTER OF STUDY 1 st			
COURSE TITLE	Scientific Programming with Python				
COURSEWORK BREAKDOWN			TEACHING WEEKLY HOUR	ECTS S Credits	
	Theory (Lectures)				
Practicing Exercises			1		
TOTAL			3	3	
COURSE UNIT TYPE	General Infrastructure				
PREREQUISITES	None				
LANGUAGE OF	Greek				
INSTRUCTION/EXAMS					
COURSE DELIVERED TO ERASMUS	No				
STUDENTS					
WEB PAGE (URL)	https://eclass.hmu.gr/courses/ECE102				

(2) LEARNING OUTCOMES

Learning Outcomes

Upon successful completion of the course, students will be able to use Python programming language to solve scientific problems. In particular, students will be able to:

- know and understand the basic principles of algorithms and programming languages, especially those of dynamic and procedural programming
- understand, interpret and analyze simple scientific problems focusing in particular to the ones encountered in electrical engineering
- Know and understand the basics of both Python and the application development environments available for this language
- design, encode, debug, and run programs in Python to solve such problems

General Skills

The graduates of this course will have the following general skills:

- Search, analysis and synthesis of data and information
- Work in an interdisciplinary environment
- Decision making
- Autonomous work

(3) COURSE CONTENT

- Introductory Concepts (Algorithms, techniques and programming methods, programming languages, compilers and interpreters)
- Introduction to Python (History, philosophy, description, installation and use of language interpreters, examples of simple programs)
- Basic language elements (Values and data types, variables, expressions, operators, comments)
- Numbers and Numerical Functions (Basic operations, integers, floating point numbers, complex numbers)
- Data Input / Output
- Execution Flow Control (Sequential execution, flow control items, if control structures, for loops for, while)
- Functions (Function definition and calling, variable range, documentation strings (docstrings), pure functions and modifier functions, default arguments, anonymous functions, decorators
- Data structures (basic structures, alphanumerics, lists, tuples, dictionaries, sets)
- Files (Access, basic read / write functions, write objects to files)
- Classes and objects (basic concepts, heredity, membership functions
- Exceptions (Mechanism, types, creation and arguments of exceptions)
- Debugging (Types of errors syntax / logic use of Python debugger

(4) TEACHING METHODS - ASSESSMENT

MODE OF DELIVERY	In-Class Face-to-Face			
USE OF INFORMATION AND	Use of ICTs in lecturing			
COMMUNICATION TECHNOLOGY	 Use of ICTs in laboratory-based training 			
	• Use of ICTs for the communication with students via the			
	e-class platform			
	• Support of the educational process via the e-class			
	platform			
TEACHING ORGANISATION	Method description /	Semester Workload		
	Activity			
	Lectures / Tutoring	39		
	Exercises / Project	26		
	Individual Study	25		
	Total Contact Hours	90		
ASSESSMENT METHODS	Exercises / Project 40%			
	Written Final Exam 60%			
	Assessment Language: Greek			

(5) RECOMMENDED BIBLIOGRAPHY

- Class notes
- Python Εισαγωγή στους υπολογιστές, Α. Αβούρης, Μ. Κουκιάς, Β. Παλιούρας, Κ. Σγάρμπας (ΠΕΚ, 2016).
- Εισαγωγή στον αντικειμενοστραφή προγραμματισμό με Python, Κωνσταντίνος Μαγκούτης, Χρήστος Νικολάου (Αποθετήριο "Κάλλιπος", 2016).
- Εισαγωγή στον προγραμματισμό με την Python Νικόλαος Αγγελιδάκης
- Python tutorial Ελληνική Κοινότητα Προγραμματιστών Python
- Python Scripting for Computational Science, Hans Petter Langtangen (Heal-Link/Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών, 2η έκδοση 2006).