COURSE OUTLINE

(1) GENERAL

SCHOOL	Engineering				
DEPARTMENT	Electrical and Computer Engineering				
LEVEL OF STUDY	Undergraduate				
COURSE UNIT CODE	1.003 SEMESTER 1 st				
COURSE TITLE	Physics				
COURSEWORK BREAKDOWN			TEACHING WEEKLY HOU	RS	ECTS Credits
Theory (Lectures)			4		4.8
Tutorial/Exercises			1		1.2
		TOTAL	5		6
COURSE UNIT TYPE	General Knowledge				
PREREQUISITES	-				
LANGUAGE OF INSTRUCTION/EXAMS	Greek				
COURSE DELIVERED TO ERASMUS STUDENTS	No				
WEB PAGE (URL)	https://eclass.hmu.gr/courses/ECE104/				

(2) LEARNING OUTCOMES

Learning outcomes

The course in Physics provides students with basic knowledge of Mechanics, Thermodynamics and Oscillations, while, it also helps them to understand the use of different types of mathematical description such as vectors, differential calculus, scalar and vector product, etc. In particular, emphasis is given on the understanding of basic concepts such as displacement, velocity, acceleration, force, momentum, torque, work, energy, rotation, kinetic and rotational motion, as well as basic principles of oscillations and wave and thermodynamics. At the same time, special attention is given to the practice of students in solving basic relevant physics problems.

Upon successful completion of the course the student will be able to:

- Know and understand in depth the basic concepts, principles and laws related to the Mechanics of a particle or a rigid object as well as to the Oscillations/Waves and the Thermodynamics.
- Understand basic physical problems and choose the appropriate model to solve them.
 - ✓ To apply the knowledge acquired in solving complex problems
 - ✓ Evaluate, analyze and relate this knowledge.
 - ✓ To develop critical thinking skills in order to interpret phenomena of everyday life.

General skills

- Search, analysis and synthesis of data and information, using the necessary technologies
- Autonomous work
- Teamwork
- Search, analysis and synthesis of data and information, using the necessary technologies
- Decision making
- Promoting liberal, creative and inductive/deductive thinking
- Work in an interdisciplinary environment

(3) SYLLABUS

- 1. Physics and Measurement
- 2. Motion in One Dimension
- 3. Vectors
- 4. Motion in Two Dimensions
- 5. The Laws of Motion
- 6. Circular Motion and Other Applications of Newton's Laws
- 7. Energy of a System
- 8. Conservation of Energy
- 9. Linear Momentum and Collisions
- 10. Rotation of a Rigid Object About a Fixed Axis
- 11. Angular Momentum
- 12. Oscillatory Motion
- 13. Wave Motion
- 14. Temperature
- 15. The First Law of Thermodynamics
- 16. Heat Engines, Entropy, and the Second Law of Thermodynamics

(4) TEACHING METHODS - ASSESSMENT

MODE OF DELIVERY	In-Class Face-to-Face				
USE OF INFORMATION AND COMMUNICATION TECHNOLOGY	 Use of ICTs in lecturing Use of ICTs in weekly tests Use of ICTs for the communication with students via the e-class platform 				
TEACHING ORGANIZATION	Method description/Activity	Semester Workload			
	Lectures	65			
	Non-guided personal study	90			
	Electronic test	35			
	Total Contact Hours	180	180		
ASSESSMENT METHODS	 All announcements for the course regulations and complementary reading material are permanently posted in the course web page. The course grade incorporates the following evaluation procedures: Weekly tests (10 %) Short answer questions Yritten examination I (40 %) Problem solving. Short answer questions Final written examination (50 %) Problem solving. Short answer questions Multiple choice questions 				

(5) RECOMMENDED BIBLIOGRAPHY

- Physics for Scientists and Engineers with Modern Physics, Raymond Serway John Jewett
- Fundamental university physics Volume 1: Mechanics, Alonso-Finn
- University Physics with Modern Physics, H. Young, R. Freedman